- (12) W. Keller-Schlerlein and V. Prelog, *Helv. Chim. Acta*, 44, 1981 (1961).
 (13) V. Prelog and A. Walser, *Helv. Chim. Acta*, 45, 631 (1962).
 (14) W. Keller-Schlerlein and V. Prelog, *Helv. Chim. Acta*, 45, 1732 (1962).
 (15) W. Keller-Schlerlein, P. Mertens, V. Prelog, and A. Walser, *Helv. Chim. Chim. Acta*, 45, 1732 (1962).
- Acta, 48, 710 (1965). (16) T. F. Emery. Blochemistry, 8, 3858 (1967).
- (17) M. Llinas, M. P. Klein, and J. B. Nellands, J. Mol. Biol., 52, 399 (1970).
- (18) A. Zalkin, J. D. Forrester, and D. H. Templeton, J. Am. Chem. Soc., 88, 1810 (1966).
- (19) H. J. Lindner and S. Göttlicher, Acta Crystallogr., Sect. B. 25, 832 (1969).
- (20) P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Crystallogr., 18,

1035 (1965).

- (21) F. R. Ahmed. SFLS program. NCR-10, National Research Council, Ottawa. 1966.
- (22)A. L. Patterson, Acta Crystallogr., 16, 1255 (1963).
- "International Tables for X-Ray Crystallography", Vol. III, Kynoch Press, Birmingham, 1962, pp 202, 214. (23)
- (24)D. van der Helm and H. B. Nicholas, Acta Crystallogr., Sect. B. 26, 1858 (1970).

- (25) See paragraph at the end of paper regarding supplementary material.
 (26) R. E. Marsh and J. Donohue, *Adv. Protein Chem.*, 22, 235 (1967).
 (27) C. K. Johnson, ORTEP Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tenn.

The Reactivity of Cobalt(I) Complexes Containing Unsaturated Macrocyclic Ligands in Aqueous Solution¹

A. Martin Tait,^{2a} Morton Z. Hoffman,*^{2a} and E. Hayon*^{2b}

Contribution from the Department of Chemistry, Boston University, Boston, Massachusetts 02215, and the Pioneering Research Laboratory, U.S. Army Natick Laboratories, Natick, Massachusetts 01760. Received January 27, 1975

Abstract: The fast kinetics technique of pulse radiolysis has been used to generate and characterize, in aqueous solution. Co(I) complexes containing the tetradentate 14-membered macrocyclic ligands 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (4,11-dieneN₄), 5,7,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,14-diene (4,14diene N_4), and 2,3,9,10-tetramethyl-1,4,8,11-tetraazacyclotetradeca-1,3,8,10-tetraene (1,3,8,10-tetraene N_4). The reaction of the hydrated electron, e_{aq}^{-} , with the Co(II) complexes ($k \sim 5 \times 10^{10} M^{-1} \text{ sec}^{-1}$) produces the corresponding Co(I) species. $Co^{1}(1,3,8,10$ -tetraeneN₄) is also generated by the action of CO₂⁻ and (CH₃)₂COH radicals on Co(II). The absorption spectra of these monovalent complexes have been determined and their decay kinetics studied as a function of pH and added scavengers. The Co(I) species behave as bases, reacting with proton donors such as H₃O⁺, CH₃CO₂H, H₂PO₄⁻, NH₄⁺, HPO_4^{2-} , and H_2O . They also behave as powerful reducing agents, transferring an electron ($k \sim 10^9 \text{ to } 10^6 M^{-1} \text{ sec}^{-1}$) to a variety of organic acceptors and one-electron metal complex oxidants such as Fe(III). Co(III), Cr(III), and Ru(III) amine, bipyridyl, and macrocyclic complexes. The Co(I) species react rapidly with N₂O, CH₃I, and O₂.

The chemistry of cobalt complexes containing macrocyclic or tetradentate ligands with delocalized electronic structures may be taken as an approximate model for the reactions of vitamin B₁₂ in biochemical processes.^{3,4} Among the oxidation states of cobalt, the Co(I) state has been proposed as a reaction intermediate in the reduction of cobaloxime and aquocobalamin by CO^{5,6} and in biological processes as vitamin B_{12S}.^{4,7} Co(I) species display strong nucleophilic character, readily displacing halide ions from alkyl halides producing cobalt-alkyl complexes.8-10 The catalytic role of some Co(I) complexes has recently been demonstrated in the reduction of several alkyl ammonium ions¹⁰ and in the conversion of nitrogen and acetylene to ammonia and ethylene.11

It has previously been reported^{12,13} that Co(I) complexes containing the macrocyclic ligands 4,11-dieneN₄ and ane N_4^{14} are exceptionally reactive and powerful reducing agents and cannot be handled in protic solvents when generated electrochemically from the corresponding Co(II) complexes. Because of their short lifetimes, these species, or any other Co(I) macrocyclic species, have not been characterized in aqueous solution.

The technique of pulse radiolysis is well suited to the study of such highly reactive low-valent species. The radiolysis of water provides a means of selectively generating one-electron reducing or oxidizing agents. The hydrated electron, e_{aq}^{-} , is produced directly by the ionizing radiation and is a powerful reducing agent ($E_{ox}^{0} = 2.8 \text{ V}$).¹⁷ Other reductants, such as CO₂⁻ and (CH₃)₂COH radicals, can be generated by the reaction of OH radicals, produced in the radiation pulse, with HCO₂⁻ and (CH₃)₂CHOH, respectively.^{18,19} The reactions of the radicals with solutes, such as coordination complexes, can be monitored using fast kinetics absorption spectrophotometry with a time resolution of $\sim 0.1 \ \mu sec$ enabling the spectra of short-lived transient intermediates to be observed and their kinetics characterized.

In this paper we describe the reactions of Co(II) complexes containing the 4,11-dieneN₄, 4,14-dieneN₄, and 1,3,8,10-tetraeneN4 macrocyclic ligands with reducing rad-

icals to generate the corresponding Co(I) species in aqueous solution. The spectra and reactivities of these low-valent complexes are examined in detail. It is important to note that the tetradentate equatorial ligand renders macrocyclic complexes of this type stable towards displacement of the ligand from the metal center so that at least the macrocyclic structure maintains its integrity upon change of the oxidation state of the metal.

Journal of the American Chemical Society / 98:1 / January 7, 1976

Apparatus and Techniques. The pulse radiolysis apparatus has already been described in detail.²⁰⁻²² Single pulses of 2.3 MeV electrons of \sim 30 nsec duration were generated (Febetron 705) and absorbed by the solution contained in a quartz cell (optical path = 2 cm). A 450-W xenon lamp which could be pulsed, thereby increasing the light output by a factor of 20-25, was used as the monitoring light source. Glass filters and a synchronized shutter were used to minimize the photolytic effects of the monitoring light.

The pH of the solutions was adjusted by use of HClO₄, KOH, phosphate (1 mM) or tetraborate (1 mM) buffer, except as otherwise indicated. Solutions were prepared from the solid salt just prior to use and were deoxygenated (except where indicated) by an Ar purge or saturated with N₂O at 1 atm partial pressure (2.5 × 10^{-2} M). Extinction coefficients were evaluated by means of SCN⁻ dosimetry taking $\epsilon_{500} = 7.6 \times 10^3 M^{-1} \text{ cm}^{-1}$ for the (SCN)₂⁻ radical.²³ Rate constants were determined by a leastsquares computer fit of the kinetics data to the usual first- and second-order equations.

Preparation of Complexes. The 4,11-dieneN₄ ligand as the ClO_4^- salt was prepared²⁴ from acetone and ethylenediamine by the method of Curtis²⁵ and used in reaction with cobaltous acetate in methanol to prepare²⁶ [Co(4,11-dieneN₄)(ClO₄)]ClO₄. [Co(4,14-dieneN₄)(ClO₄)]ClO₄ was similarly prepared from 4,14-dieneN₄ in ethanol,²⁶ the free base having been obtained by the addition of cyanide²⁷ to the analogous Ni(II) complex.²⁸ Dissolution of these low-spin five-coordinate Co(II)-perchlorato complexes in water results in the displacement of the coordinated perchlorate group by H₂O giving complexes of the form [Co(4,11-dieneN₄)(H₂O)₂]²⁺ in aqueous solution.^{26,29} A sample of [Co(1,3,8,10-tetraene-N₄)(H₂O)₂](ClO₄)2³² was kindly supplied to us by Professor J. F. Endicott (Wayne State University).

The other complexes were available from our laboratory reserves. The sample of $Cr(bpy)_3^{3+}$ was also supplied to us by Professor Endicott and the Ru(III) complexes by Professor J. N. Armor (Boston University).

Results

Reactions of Co(II) with e_{aq}^{-} and Other Reducing Radicals. Kinetics. The reaction rate constants for the various Co(II) macrocyclic complexes (as their perchlorate salts) with e_{aq}^{-} were determined, in the presence of 1 *M tert*butyl alcohol as an OH radical scavenger,³⁴ from the pseudo-first-order decay of e_{aq}^{-} monitored at 700 and 500 nm. From the dependence of these rate constants on the substrate concentration $(1.25-2.50 \times 10^{-5} M)$, the values of $k(Co(II) + e_{aq}^{-})$ were calculated and are recorded in Table I. Decays were monitored over three-four half-lives.

No reaction was observed between the Co(II) complexes of 4,11-dieneN₄ and 4,14-dieneN₄ with the reducing radicals CO_2^- and $(CH_3)_2$ COH by monitoring the wavelengths at which the Co(I) species absorb (see following section) implying that $k \ll 10^7 M^{-1} \sec^{-1}$ for these processes. However, CO₂⁻ and (CH₃)₂COH do reduce Co^{II}(1,3,8,10tetraeneN₄) with rate constants of 4.7×10^9 and 5.5×10^8 M^{-1} sec⁻¹, respectively. These latter experiments were conducted with Ar-purged solutions containing $1 \times 10^{-4} M$ Co(II) and 0.1 M HCO₂⁻ at pH 6.5 or 1 × 10⁻³ M Co(II) and 2 M 2-propanol at pH 1.25 and 6.5. Under these conditions, CO₂⁻ and (CH₃)₂COH constitute approximately one-half of the total reducing equivalents in neutral solution with e_{aq}^{-} constituting the other half; in acidic solution $(CH_3)_2COH$ constitutes virtually all of the reducing equivalents. Low doses of radiation were employed in order to keep the radical concentrations $< 2 \times 10^{-5} M$. In this way, the complex radical reactions could compete effectively with the radical-radical combination reactions which have 2k values for CO_2^- and $(CH_3)_2COH$ of 1.4×10^9 and 2.0 $\times 10^9 M^{-1} \text{ sec}^{-1}$, respectively.^{20,35} It should be noted that

Table I. Rate Constants for the Reaction of Co(II) Macrocyclic Complexes with e_{aq} , CO₂, and (CH₃)₂COH Radicals

Reductant, R	pH of experiment	$k(Co(II) + R), M^{-1} sec^{-1}$			
		Co ^{II} (4,11- dieneN ₄)	Co ^{II} (4,14- dieneN ₄)	Co ^{II} (1,3,8,10- tetraeneN ₄)	
e _{aq} -a	6-10	4.4×10^{10}	3.4 × 10 ¹⁰	4.9 × 10 ¹⁰	
CO_2^{-b} .	6.5			$4.7 imes 10^{\circ}$	
(CH ₃) ₂ COH ^c	1.25,6.5	-		5.5 × 10°	

^a Determined in the presence of $(1.25-2.5) \times 10^{-5} M$ Co(II) substrate, 1 *M tert*-butyl alcohol, 1 m*M* phosphate or borate buffer in Ar-purged solutions. Value for Co^{II}(1,3,8,10-tetraeneN₄) was determined at pH 6.5 only. ^b Determined in the presence of $1 \times 10^{-4} M$ Co(II) substrate, 0.1 *M* HCO₂⁻ in Ar-purged solutions. ^c Determined in the presence of $1 \times 10^{-3} M$ Co(II) substrate, 2 *M* 2-propanol, perchloric acid, or 1 m*M* phosphate buffer in Ar-purged solutions.

these radicals also reduce the corresponding Co(III) complexes to Co(II).³⁶

Transient Spectra. The rapid reaction of e_{aq}^{-} with the macrocyclic complexes assured that transient species would be fully formed $\leq 0.5 \ \mu$ sec after the pulse and their absorption spectra determined before any appreciable decay had occurred. The transient species were observed in Ar-purged solutions containing $5 \times 10^{-4} M$ Co(II), 1 M tert-butyl alcohol, and 1 mM buffer. All spectra were corrected for the depletion of the substrate and for the absorption of the radical derived from tert-butyl alcohol,²⁰ whenever necessary.

The transient optical absorption spectrum obtained from the reaction of e_{aq}^{-} with Co^{II}(4,11-dieneN₄) at pH 7 is shown in Figure 1. This spectrum, with bands at 630 (ϵ 9100 M^{-1} cm⁻¹), 450 (1060), 330 (3230), and 290 (3675) nm, is independent of pH from 3.5 to 10. Vasilevskis and Olson¹³ have investigated the electrochemical reduction of this Co(II) complex in CH₃CN and report that the resultant Co(I) species has a spectrum with maxima at 679 (ϵ 15950 M^{-1} cm⁻¹), 450 (~1100), 350 (3300), 307 (3600), and 245 (2950) nm. Despite the small differences in λ_{max} and ϵ between the two solvents, there is little doubt that the action of e_{aq}^{-} on the Co(II) complex generates the Co(I) species. The transient spectrum obtained from the reaction of e_{aq}^{-} with Co^{II}(4,14-dieneN₄) at pH 7 (Figure 2) shows five bands of similar intensities (ϵ 2500-3500 M^{-1} cm⁻¹) in the uv-visible region. The spectrum of the Co¹(4,14-dieneN₄) species has not been previously reported.

The reaction of e_{aq}^{-} with Co^{II}(1,3,8,10-tetraeneN₄) at pH 6.5 produced a transient spectrum with a broad band centered at 700 nm (ϵ 8400 M^{-1} cm⁻¹) shown in Figure 3. A similar spectrum has been obtained by Endicott upon the electrochemical reduction of this Co(II) complex in aqueous solution.³⁷ The reduction of this complex by CO₂⁻ at pH 6.5 and by (CH₃)₂COH at pH 1.25 and 6.5 produced the same transient spectra as from e_{aq}^{-} . Slightly higher ϵ values (9500-10200 M^{-1} cm⁻¹) were observed but these differences are deemed to be within the experimental errors.

Reactions of Co(I). With Acids. Both Co¹(4,11-dieneN₄) and Co¹(4,14-dieneN₄) were unstable in aqueous solution and their spectra decayed via pH-dependent first-order kinetics producing a residual absorption with bands at 280 and 320 nm (Figures 1 and 2). Plots of the first-order rate constants for the decay of Co¹(4,11-dieneN₄) and Co¹(4,14dieneN₄), monitored at 630 and 590 nm, respectively, as a function of pH are shown in Figure 4 and in the insert to Figure 2. The Ar-purged *tert*-butyl alcohol (1 *M*) solutions contained $5 \times 10^{-4} M$ Co(II) at pH >4.2 and $5 \times 10^{-3} M$ Co(II) at pH \leq 4.0 with 1 mM buffer or HClO₄. The ionic strengths of the solutions were not specifically controlled but were low and in a narrow range; $\mu = 0.002-0.004 M$ at pH >4.2 and ~0.002 M at pH <4.0.

Figure 1. Absorption spectra of $Co^{1}(4,11\text{-dieneN}_{4})$ generated from the reaction of e_{aq}^{-} with Co(II) in 1 *M tert*-butyl alcohol and 1 m*M* phosphate buffer at pH 7, O. Absorption spectrum resulting from the decay of $Co^{1}(4,11\text{-dieneN}_{4})$ at pH 7 (\bullet) 20 sec after the pulse.

Figure 2. Absorption spectrum of $Co^{1}(4,14\text{-dieneN}_{4})$ generated from the reaction of e_{aq}^{-} with Co(II) in 1 *M tert*-butyl alcohol and 1 m*M* phosphate buffer at pH 7, O. Absorption spectrum resulting from the decay of $Co^{1}(4,14\text{-dieneN}_{4})$ at pH 7 (\bullet) 20 sec after the pulse. Insert: Dependence upon pH of the first-order rate constant for the decay of $Co^{1}(4,14\text{-dieneN}_{4})$ in deoxygenated solutions containing 1 *M tert*butyl alcohol in the presence of 1 m*M* phosphate or tetraborate buffer, Δ_{i} in the absence of buffer. Δ_{i}

Several features of the decay rate constants should be noted: (1) there is nearly a 1000-fold variation of k over the pH range 3.5-10; (2) at pH <4.2 and constant ionic strength, the value of k increases rapidly upon addition of acid; (3) in solution buffered with phosphate, an inflection point at pH ~7.2 is observed. The results suggest that the Co¹(dieneN₄) species react with H⁺ in acidic solution and with the conjugate forms of the phosphate buffer (H₂PO₄⁻ and HPO₄²⁻; pK_a = 7.2) in neutral solution. No effect of borate buffer was observed at pH 8.5-10.

The first-order rate constants were found to be linearly dependent upon $[H^+]$ and [phosphate] as well as the con-

Figure 3. Absorption spectrum of Co¹(1.3,8,10-tetraeneN₄) generated from the reaction of e_{aq}^{-} with Co(II) in 1 *M tert*-butyl alcohol and 1 m*M* phosphate buffer at pH 6.5, **•**. Absorption spectrum recorded 400 μ sec after the pulse, O. Absorption spectrum resulting from the decay of Co(I) (\Box) 20 sec after the pulse.

Figure 4. Dependence upon pH of the first-order rate constant for the decay of $Co^{1}(4,11\text{-dieneN}_{4})$: in the presence of 1 mM phosphate or tetraborate buffer, O; in the absence of buffer with acidity controlled by HClO₄, \bullet . Insert: Dependence of first-order rate constant on $[H_{3}O^{+}]$ (\Box) and $[H_{2}PO_{4}^{-}]$ (\blacksquare).

centration of other proton donors such as CH3CO2H and NH4⁺. The data for Co¹(4,11-dieneN4) are shown in Figures 4 and 5. From the slopes of these plots, the secondorder rate constants for the reaction of Co(I) with various proton donors, HA, were evaluated (Table II). The values for H_2O were determined at pH 9-10 in the absence of buffer but at low radiation doses so as to maintain the pH constant. With one exception, the experiments were performed at pH values well below the pK_a of the acids in order to ensure the absence of the conjugate base. The pH of the acetic acid solution was 4.8 so that $[CH_3CO_2H] =$ $[CH_3CO_2^-]$. For all these experiments, conditions were chosen such that all e_{aq}^{-} reacted with the Co(II) substrate and none with HA. Furthermore, the concentrations of HA and H⁺ were established such that $k(Co(I) + HA) \ge$ $20k(Co(I) + H^+)$. In all cases, the decay of Co(I) was not affected by the presence of *tert*-butyl alcohol.

The Co¹(1,3,8,10-tetraeneN₄) species produced in *tert*butyl alcohol solution at pH 6.5 decayed with $t_{1/2} \sim 50$ -

Proton donor, HA	pK _a of HA	pH of expt	$k(\operatorname{Co}(\mathrm{I}) + \mathrm{HA}, M^{-1}\operatorname{sec}^{-1}a)$		
			Co ^I (4,11- dieneN ₄)	Co ^I (4,14- dieneN ₄)	$Co^{I}(1,3,8,10)$ tetraeneN ₄)
H ₃ O+	-1.75	Variable	3.1 × 10° b	1.2 × 10°b	$1.6 \times 10^{5}c$
CH ₃ CO ₂ H	4.75	4.8	$7.5 \times 10^{7} d$		$6.2 \times 10^{4}e$
H₂PO₄-f	7.2	5.5	9.8×10^{7}	3.0×10^{7}	
NH₄+8	9.25	7.0	6.8 × 10⁵		
$HPO_{a^2} - h$	12.25	10.0	1.0×10^{5}		
H ₂ O ⁴	15.74	9-10	4.8 × 10 ¹	2.0×10^{1}	_

^a Determined in Ar-purged solutions at the λ_{max} for the Co(I) species. ^b 5 × 10⁻³ *M* Co(II), 1 *M* tert-butyl alcohol, pH 3.5–4.2, ionic strength = 0.015 *M*. ^c 1 × 10⁻³ *M* Co(II), 2 *M* 2-propanol, pH 0.25–1.25, ionic strength = 0.06–0.6 *M*. ^d 2 × 10⁻³ *M* Co(II), [CH₃CO₂H] = [CH₃CO₂H] = [CH₃CO₂-] = (2–10) × 10⁻³ *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.01–0.05 *M*. ^e 2 × 10⁻³ *M* Co(II), [CH₃CO₂H] = [CH₃CO₂-] = (2–10) × 10⁻³ *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.01–0.05 *M*. ^e 2 × 10⁻³ *M* Co(II), [CH₃CO₂H] = [CH₃CO₂-] = (2–10) × 10⁻³ *M*, 2 *M* 2-propanol, ionic strength = 0.01–0.05 *M* f 5 × 10⁻⁴ *M* Co(II), [H₂PO₄-] = (1–10) × 10⁻³ *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.005 *M* f 5 × 10⁻⁴ *M* Co(II), [H₂CO₄H] = [CH₃CO₂-] = (2–10) × 10⁻³ *M*, 2 *M* 2-propanol, ionic strength = 0.01–0.05 *M* f 5 × 10⁻⁴ *M* Co(II), [H₂PO₄-] = (1–10) × 10⁻³ *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.005 *M* f 5 × 10⁻⁴ *M* Co(II), [H₂CO₄H] = [CH₃CO₄H] = (1-10) × 10⁻³ *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.005 × 10⁻⁴ *M* Co(II), [H₂CO₄H] = (1-10) × 10⁻² *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.005 × 10⁻⁴ *M* Co(II), [H₂CO₄H] = (1-10) × 10⁻² *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.005 × 10⁻⁴ *M* Co(II), [H₂CO₄H] = (2-10) × 10⁻² *M*, 1 *M* tert-butyl alcohol, ionic strength = 0.006–0.3 *M*. ⁱ 5 × 10⁻⁴ *M* Co(II), 1 *M* tert-butyl alcohol, ionic strength = 0.001 *M*.

100 μ sec to reveal a second transient absorption (Figure 3) virtually identical with the initial transient but about 16% less intense. This secondary absorption was not observed when the Co(I) species was generated by CO_2^- at pH 6.5 or $(CH_3)_2$ COH radicals at pH 1 and 6.5, indicating that the small loss of the original Co(I) absorption is dependent on the presence of *tert*-butyl alcohol. The rate of the decay of the Co(I) initially produced was independent of [Co(II)], [buffer], and pH (3.5-6.5) but dependent on the radiation dose and thus on [Co(1)], [·CH₂C(CH₃)₂OH], and/or the concentration of products formed from the disappearance of the alcohol radicals. It would appear that the secondary absorption is the Co(I) species remaining after reaction of some of it with scavengers associated with the tert-butyl alcohol. Indeed, the decay kinetics of the secondary absorption in the presence of *tert*-butyl alcohol at pH 5 (k = 3.7 \times 10¹ sec⁻¹) are virtually identical with those of the initial Co(I) species generated from (CH₃)₂COH in the presence of 2-propanol at pH 5 ($k = 4.5 \times 10^{1} \text{ sec}^{-1}$). The decay of the secondary absorption revealed a residual absorption that was recorded ~ 20 sec after the pulse. The further stability of this final absorption (Figure 3) was not examined.

The second-order rate constants for the reaction of Co¹(1,3,8,10tetraeneN₄) with proton donors were determined, therefore, in the presence of 2-propanol; $k(Co(I) + H^+) = 1.6 \times 10^5$ $M^{-1} \sec^{-1}$ at pH 0.25-1.25 and $k(Co(I) + CH_3CO_2H) =$ $6.2 \times 10^4 M^{-1} \sec^{-1}$ at pH 4.8. The normal decay of the Co(I) species was also affected by the presence of phosphate buffer and NH₄⁺ but the values of k, which are <10⁴ $M^{-1} \sec^{-1}$, could not be determined, because of interference by reaction with H⁺. Decay kinetics of Co¹(1,3,8,10tetraeneN₄) in basic solution were not evaluated because of the instability of the Co(II) substrate at pH >7.

With Organic Electron Acceptors. The rate constants for electron transfer from $Co^{I}(4,11$ -dieneN₄) and $Co^{I}(1,3,8,10$ tetraeneN₄) to various organic acceptors, A, were determined by monitoring the decay of the Co(I) band, the disappearance of A, or the formation of the corresponding reduced species, .A⁻ or .AH, at a suitable wavelength.³⁸ Because of the high reactivity of the acceptors with e_{aq} to form $\cdot A^-$ or $\cdot AH$, the concentrations of Co(II) $(1 \times 10^{-3} M)$ and A $(\leq 5 \times 10^{-5} M)$ were chosen such that no more than 5% of e_{aq}^{-} would be lost through direct reaction with A. The experiments were carried out at pH 9.2 for Co¹(4,11dieneN₄) and pH 6.5 for $Co^{I}(1,3,8,10$ -tetraeneN₄) in order to minimize the reaction of Co(I) with H⁺. Solutions contained 1 mM buffer and 1 M tert-butyl alcohol. The values of k for some organic acceptors are given in Table III with all but one acceptor (3-benzoylpyridine) showing 100% electron transfer. The spectrum of the $\cdot A^-$ species from the reaction of menaquinone with $Co^{1}(4,11-dieneN_{4})$ is shown

Figure 5. Dependence of log k (Co¹ + HA) for Co¹(4,11-dieneN₄) on the pK_a values of HA; experimental points taken from Table II. The dashed lines represent slopes of 0 and -1. Insert: Dependence of firstorder rate constant for the decay of Co¹(4,11-dieneN₄) on [CH₃CO₂H] (\square) and [NH₄⁺] (\blacksquare).

in Figure 6a and it agrees well with the previously published spectrum.³⁹

The extent of electron transfer from Co(I) to A was determined by comparing the quantitative absorbance due to A^- formed from the reaction of Co(I) with A with that obtained directly from the reaction of e_{aq}^- with A. Considering the very rapid latter reaction to be 100% efficient in generating $A^{-,38}$ the efficiency of the electron transfer reactions of Co(I) with A could be determined. In Figure 6b a plot is made of the efficiency of electron transfer from Co^I-(4,11-dieneN₄) as a function of the standard reduction potential of A at pH 9.2, E_{m} .³⁸ It can be seen that for acceptors with E_m values more negative than -0.88 V, no electron transfer was observed; for E_m more positive than -0.85 V, transfer was quantitative. The apparent oxidation potential for Co^I(4,11-dieneN₄) is evaluated from the midpoint of this "titration" curve to be +0.86 V.

In the same way, transfer from $Co^{1}(1,3,8,10$ -tetraeneN₄) was quantitative to acceptors with E_{m} values at pH 6.5 more positive than -0.24 V; for acceptors with E_{m} values more negative than -0.35, no transfer was observed. From this we estimate the apparent oxidation potential of $Co^{1}(1,3,8,10$ -tetraeneN₄) in aqueous solution to be ca. +0.28 V.

The reaction of Co(I) with A is not reversible under these experimental conditions. Indeed, the $\cdot A^-$ radicals themselves undergo irreversible bimolecular decay.^{38a,b} Thus, the

Figure 6. (A) Optical absorption spectrum of the semiquinone radical anion of menaquinone $(\cdot A^-)$ produced from the reaction of $\operatorname{Co}^1(4, 11$ dieneN₄) with menaquinone $(5 \times 10^{-5} M)$ in the presence of 1 *M tert*butyl alcohol and 1 m*M* tetraborate at pH 9.2. (B) Dependence of the efficiency of electron transfer (expressed as percent) in the reaction of $\operatorname{Co}^1(4, 11-$ dieneN₄) with organic electron acceptors, as a function of the standard reduction potential of the acceptors at pH 9.2 in 1 *M tert*butyl alcohol and 1 m*M* tetraborate. Acceptors used: 1, menaquinone; 2, 9,10-anthraquinone-2-sulfonate; 3, eosin Y; 4, fluorenone; 5, fluorescein; 6, 3-benzoylpyridine; 7, dimethyl maleate; 8, benzophenone; 9, acetophenone.

apparent oxidation potentials for the Co(I) species differ from the thermodynamic potential.^{38f}

With Metal Complexes. Col(4,11-dieneN₄) was generated by the e_{aq}^{-} reduction of the corresponding Co(II) com-plex (5 × 10⁻³ M) at pH 9.2 in the presence of (0.1-2) × 10^{-3} M metal complex oxidants, 1 M tert-butyl alcohol, and 1 mM tetraborate buffer in Ar-purged solutions. Experiments were performed as rapidly as possible in order to ensure that the M(III) complexes were in the mildly alkaline solution for <30 min. Under these conditions, <70% of e_{aq}^{-} reacted with Co(II) with the remainder reacting directly with the M(III) complexes. However, low doses of e_{aq} (<2 × 10⁻⁵ M) were used so that the loss of M(III) via reaction with e_{aq}^{-} was not significant. The conditions chosen also ensured that the Co(I) species reacted with the oxidant and not with H_2O or H^+ . Co(I) decayed via firstorder kinetics with the rate constant dependent on the concentration of the oxidant. From such pseudo-first-order data, using two-four different oxidant concentrations, the second-order rate constants given in Table III were calculated. Electron transfer from Co^I(1,3,8,10-tetraeneN₄) to the M(III)-bipyridyl complexes were conducted in Arpurged solutions at pH 6.5 in the presence of $5 \times 10^{-4} M$ Co(II), 1 M tert-butyl alcohol, 1 mM buffer, and (2.5-5.0) $\times 10^{-5} M M(III).$

With CH₃I, O₂, and N₂O. The second-order rate constants for the reaction of the Co(I) species with CH₃I, O₂, and N₂O are given in Table III. These values were determined from the pseudo-first-order decay of the Co(I) species as a function of the reactant concentration. The rate constants for the reaction with CH₃I were determined in Ar-purged solution containing $(2-5) \times 10^{-4} M$ CH₃I, $5 \times 10^{-3} M$ Co(II), 1 M tert-butyl alcohol, and 1 mM buffer. Under these conditions, all e_{aq} reacted with Co(II). In the presence of O₂, the Co(I) species decayed with k

In the presence of O₂, the Co(I) species decayed with $k \sim 1 \times 10^9 M^{-1} \sec^{-1}$. As far as could be seen, the Co(I) + O₂ reaction did not regenerate the spectrum of the original

Table III. Rate Constants for the Reaction of Co(I) with Oxidants

	$k(Co(I) + S), M^{-1} sec^{-1}$			
Compound, S	Co ^I (4,11-dieneN₄) ^a	Co ^I (1,3,8,10- tetraeneN ₄) ^b		
Or	ganic Acceptors ^c			
Menaquinone	4.6 × 10°			
Indigosulfonate		4.9×10^{9}		
9,10-Anthraguinone-				
2.6-disulfonate		3.8×10^{9}		
Riboflavin		1.0×10^{9}		
9.10-Anthraquinone-		110 / 10		
2-sulfonate	4.4×10^{9}			
Fluorenone	4.3×10^{9}			
3-Benzoylpyridine	4.6×10^{8}			
Metal (Complex Acceptorsd			
Cr(bpy) ₃ ³⁺	$1.2 \times 10^{\circ}$	1.6×10^{8}		
Co(bpy) ₃ ³⁺	1.2×10^{9}	8.5×10^{7}		
Fe(bpy) ₃ ³⁺	2.3×10^{7}			
$Ru(NH_{3})_{6}^{2+}$	4.0×10^{8}			
$Ru(NH_3)_5NO^{3+}$	3.9×10^{7}			
$Co(en)_3^{3+}$	7.9×10^{6}			
$Co(NH_{3})_{6}^{3+}$	7.5×10^{6}			
[Co(4,11-dieneN ₄)-				
(OH),]+	4.0×10^{6}			
$[Co(1,3,8,10-tetraeneN_{4})-$				
(OH) ₂] ⁺	6.7×10^{6}			
0	ther Acceptors			
O ₂ ^e	$1.7 \times 10^{9} (9.0 \times 10^{8})$	f 1.1 × 10°		
N ₂ Og	$3.9 \times 10^7 (9.0 \times 10^6)$			
CĤ₃I ^ħ	4.7 × 10 ⁸	<105		

^a Determined at 630 nm in Ar-purged solutions containing 1 *M* tert-butyl alcohol at pH 9.2 unless otherwise indicated. ^b Determined at 700 nm in Ar-purged solutions containing 1 *M* tert-butyl alcohol at pH 6.5. ^c 1 × 10⁻³ *M* Co(II), [oxidant] = (1.25-5.0) × 10⁻⁵ *M*, ionic strength = 0.004 *M*. ^d5 × 10⁻³ *M* Co^{II}(4,11-dieneN₄), [oxidant] = (2-10) × 10⁻⁴ *M*, ionic strength = 0.016-0.028 *M*: 5 × 10⁻⁴ *M* Co^{II}(1,3,8,10-tetraeneN₄), [oxidant] = (2.5-5) × 10⁻⁵ *M*, ionic strength = 0.02 *M*. ^e7 × 10⁻³ *M* Co(II), [O₂] = (7.5-25) × 10⁻⁵ *M*, ionic strength = 0.02 *M*. ^fValue for Co^{II}(4,14-dieneN₄). 83 × 10⁻³ *M* Co(II), [N₂O] = (7.5-25) × 10⁻⁴ *M*, no alcohol present, ionic strength = 0.01 *M*. ^h5 × 10⁻³ *M* Co(II), [CH₃I] = (2-5) × 10⁻⁴ *M*, ionic strength = 0.015 *M*.

Co(II) complex. Instead, the spectrum of a final product was observed with a tail absorption between 380 (the lower limit of observation) and 500 nm with ϵ_{380} 900 M^{-1} cm⁻¹.

Both of the Co^I(dieneN₄) species reacted rapidly with N₂O at pH 9.2 ($k \sim 10^7 M^{-1} \text{ sec}^{-1}$) in solutions containing $3 \times 10^{-3} M$ Co(II), 1 mM tetraborate, and (7.5-25) $\times 10^{-4} M$ N₂O. The reaction of N₂O with Co^I(4,11-dieneN₄) produced a dull tail absorption between 350 and 500 nm ($\epsilon_{350} \sim 2900 M^{-1} \text{ cm}^{-1}$) which was not due to the original Co(II) complex.

Discussion

The radiolysis of water and aqueous solutions generates e_{aq}^{-} , OH radicals, and H atoms as the radical species according to the overall reaction $H_2O \rightarrow e_{aq}^{-}$ (2.8), OH (2.8), H (0.55) where the numbers in parentheses represent the G values of the species (number of radicals formed per 100 eV of energy absorbed by the solvent). By the use of selected scavengers, a particular reactive radical can be chosen to be the principal reactant in the solution. Thus, in the presence of *tert*-butyl alcohol, the OH radicals are effectively scavenged: OH + (CH₃)₃COH $\rightarrow \cdot$ CH₂C(CH₃)₂OH + H₂O ($k = 5.2 \times 10^8 M^{-1} sec^{-1}$);⁴⁰ the resultant radical is relatively inert and its weak optical absorption²⁰ below 280 nm can easily be taken into account when transient absorption spectra are determined. In N₂O-saturated solution, e_{aq}^{-} is efficiently scavenged: $e_{aq}^{-} + N_2O \rightarrow OH + N_2 + OH^{-}$ ($k = 8.7 \times 10^9 M^{-1} sec^{-1}$);⁴¹ in acidic solution e_{aq}^{-1}

is converted to H atoms: $e_{aq}^- + H^+ \rightarrow H$ ($k = 2.2 \times 10^{10}$ M^{-1} sec⁻¹).⁴¹ The reducing radicals CO₂⁻ and (CH₃)₂COH can be generated conveniently from solutions containing formate or 2-propanol:

OH/H + HCO₂⁻ → CO₂⁻ + H₂O/H₂
(
$$k = 2.5 \times 10^9/2.5 \times 10^8 M^{-1} sec^{-1}$$
)^{40,42}

OH/H + (CH₃)₂CHOH → (CH₃)₂COH + H₂O/H₂
(
$$k = 1.3 \times 10^9/5.0 \times 10^7 M^{-1} \text{ sec}^{-1}$$
)^{40,42}

Reaction of the Co(II) complexes with e_{aq}^{-} occurs at or near the diffusion-controlled limit. The values of k for the Co^{II}(dieneN₄) complexes are independent of pH (6-10) suggesting that the complexes do not undergo protonationdeprotonation reactions in that pH range; acid-base behavior can affect the value of k and is seen in the reactions of the corresponding Co(III) complexes with $e_{aq}^{-.36}$ Because of the sensitivity of $Co^{II}(1,3,8,10$ -tetraeneN₄) towards base, all experiments with that complex were performed at pH <7. The reaction of e_{aq}^{-} with Co(II) generates the spectrum of Co(I) directly with no evidence for the initial formation of a Co(II)-coordinated ligand radical species at a time resolution of $\sim 0.1 \ \mu sec.$ However, neither of the $Co^{II}(dieneN_4)$ complexes was reduced by CO_2^- or $(CH_3)_2COH$ suggesting either that the redox potentials of the systems are not favorable or that the reactions possess mechanistic barriers that render an otherwise spontaneous reaction too slow to compete with other bimolecular radical decay steps.

Proton Transfer Reactions. Unlike their known stability in dry CH₃CN solution,^{13,30} these Co(I) species are unstable in aqueous solution. Their reactivity patterns indicate their involvement in proton transfer processes. Similar behavior has been observed for Co¹(CN)₅⁴⁻ ($k = 2 \times 10^3$ $M^{-1} \sec^{-1}$ for reaction with H₂O)⁴³ and the reactivity of Co¹(4,11-dieneN₄)¹³ and various Co(I) complexes containing tetradentate (nonmacrocyclic) ligands¹⁰ with water has also been noted. Vitamin B_{12S}⁴ reacts with H⁺, the Co(III)hydrido complex commonly being proposed as an intermediate species in the formation of H₂. Stable hydridocobaloximes have, however, been isolated as solids⁴⁴ as has the Co^{III}(CN)₅H³⁻ complex.⁴⁵ Therefore, it is consistent with these previous studies to suggest that the proton transfer reactions reported here occur via direct addition of H⁺ to the Co(I) center.

$$Co(I) + H^{+} \rightarrow [Co(I)-H^{+}] \leftrightarrow [Co(II)-H] \leftrightarrow [Co(III)-H^{-}]$$

In support of this proposition, it should be noted that the complexes Ni¹(4,11-dieneN₄), Ni¹(aneN₄), and Cu¹(4,11-dieneN₄) also react with H^{+.46} The rates of proton transfer for these complexes are several orders of magnitude lower than those for the Co¹(dieneN₄) complexes and of the same order as Co¹(1,3,8,10-tetraeneN₄). The fact that proton transfer takes place to a complex containing a fully saturated macrocyclic ligand rules out proton attack on the imine functional groups as a requirement for this reaction. The spectra resulting from the reaction of Co¹(4,11-dieneN₄) with phosphate at pH 7.0 or water at pH 10.0 were identical and were stable for at least 20 sec following the pulse.

Eigen has shown⁴⁷ that a relationship exists between the rate constant for proton transfer and the difference in the pK of the donor acid and the acceptor base. When $pK_a < pK_b$ such that $\Delta pK (pK_a - pK_b) < 0$, "normally behaved" bases undergo diffusion-controlled reactions with k being independent of ΔpK . When $\Delta pK > 0$, a plot of log k vs. ΔpK gives a slope of -1 with the rate constant decreasing with increasing values of ΔpK . In the vicinity of $\Delta pK \approx 0$, a

sharp transition from a slope of zero to -1 is theoretically predicted. In practice, the limiting slopes are seldom achieved and the transition point usually shows decided curvature.

The data in Table II for $Co^{I}(4,11$ -dieneN₄) are plotted in the form of log k vs. pK_a in Figure 5, inasmuch as pK_b for Co(I) is not known. The values of k were not derived at constant ionic strengths. However, inasmuch as the rate constant is a relatively weak function of ionic strength under these conditions,⁴⁸ we feel that the narrow range of ionic strengths of the solutions did not introduce any error of magnitude into the plot shown in Figure 5. The values of μ (and especially $\mu^{1/2}$) did not vary greatly for the individual donors used and did not significantly affect the linearity of the plots of k vs. [HA]. Thus, despite the limited number of points and the uncertainties involved, the trend depicted in Figure 5 supports our contention that the Co(I) species reacts with these acids via proton transfer reactions. Deviations from ideality, also seen in even simpler systems,⁴⁷ have been reconciled in terms of the asymmetry of charge, molecular structure and steric restriction, hydrogen bonding, and electron distribution in the donors and acceptors. From the general region of the transition shown in Figure 5, we estimate pK_b for Co¹(4,11-dieneN₄) to be in the range 6-10.

The limited data for the other Co(I) species shows Co^I(4,14dieneN₄) to be only slightly less reactive than its isomer but Co^I(1,3,8,10-tetraeneN₄) is 3-4 orders of magnitude less reactive than the diene complexes. This implies that the value of k for the reaction of Co^I(1,3,8,10-tetraeneN₄) with H₂O may be of the order of $10^{-3} M^{-1} \sec^{-1}$ (or less) and so the Co(I) species may show modest stability in alkaline solution³⁷ barring any hydrolysis of the ligand. At pH 6.5, however, the residual absorption 20 sec after the pulse resembles the original Co(II) substrate (Figure 3) which may be the end product of the reaction of Co^I(1,3,8,10-tetraeneN₄) with proton donors via some hydrido intermediate.

Electron Transfer Reactions. The Co(I) species are powerful reducing agents, reacting rapidly with a wide range of electron acceptors. The apparent oxidation potentials of these species in aqueous solution can be compared with existing data in the literature despite the nonthermodynamic character of the data presented in this paper and the nonaqueous solvent system employed by other workers. $E_{1/2}$ values for $Co^{I}(4,11\text{-diene}N_{4})$ and $Co^{I}(1,3,8,10\text{-tetraene}N_{4})$ in CH₃CN have been extrapolated to the aqueous system, and through an estimation of CH₃CH-H₂O junction potential, E_{ox}^0 values of +0.7 and +0.48 V, respectively, have been obtained.⁴⁹ Considering all the factors involved, the similarity of both sets of data is, perhaps, remarkable and the dieneN₄ complex is established as the stronger reducing agent. Even in their limited form, these data demonstrate the profound effect of the degree and position of unsaturation of the macrocyclic ligand on the redox potential of the complex.

The Co(I) species react rapidly with metal complex oxidants with rate constants that cover a range of three orders of magnitude $(10^{6}-10^{9} M^{-1} \text{ sec}^{-1})$. Values of $k < 10^{6} M^{-1}$ sec⁻¹ cannot be determined by the pulse technique due to the high concentration of oxidant required to scavenge Co(I); the trivalent metal complexes used themselves react very rapidly with e_{aq}^{-} ($k = 4-9 \times 10^{10} M^{-1} \text{ sec}^{-1}$).^{17,36} It can probably be safely assumed that these reactions occur via an outer-sphere mechanism inasmuch as the electrontransfer reactions of the oxidants employed are well established to be of that type.^{50,51} Because of the lack of any information concerning the self-exchange rate constants for the Co(I) species and the lack of certainty about the exact values of their redox potentials in aqueous solution, we made no attempt to fit the data in Table III to the Marcus relationship in a quantitative manner.⁵²

However, certain trends are apparent from the data. If one assumes that the electrostatic effects for Co^I(4,11-dieneN₄) and Co¹(1,3,8,10-tetraeneN₄) are similar, then the relative rate constants for their reactions will be dependent upon their relative reorganizational energies and redox potentials. In reaction with $Cr(bpy)_3^{3+}$ and $Co(bpy)_3^{3+}$, the rate constants for $Co^{1}(1,3,8,10$ -tetraeneN₄) are approximately an order of magnitude lower than are those for Col-(4,11-dieneN₄). It must be pointed out that the differences in the ionic strength of the solutions cannot account for the differences in k shown by the two Co(I) species. Because of the lower reducing ability of the Co^I(tetraeneN₄) species, its reactivity would be expected to be lower than that of the Co^{1} (dieneN₄) by approximately two orders of magnitude if the self-exchange rate constants of the two species were equal. From the very limited data it appears that the selfexchange rate constant for $Co^{I}(4,11-dieneN_{4})$ would be an order of magnitude or so greater than that of Co¹(1,3,8,10tetraeneN₄) if the free energy correlation holds for these reactions. Indeed, Endicott has concluded⁵¹ that this correlation does not hold true for electron transfer reactions of Co(III) complexes containing these macrocyclic ligands and that the self-exchange rate constant for the [Co(4,1]dieneN₄)(OH₂)₂]^{3+,2+} couple is about seven orders of magnitude lower than that of $[Co(1,3,8,10-tetraene-N_4)(OH_2)_2]^{3+,2+}$. Finally, it should be mentioned that the $Cu^{I}(4,11$ -dieneN₄) complex, the redox potential of which is similar to that of $Co^{l}(1,3,8,10$ -tetraeneN₄), undergoes electron transfer to the metal complex oxidants with rates similar to those of the latter complex; Ni^I(4,11-dieneN₄) and $Ni^{I}(aneN_{4})$ tend to parallel $Co^{I}(4,11-dieneN_{4})$ in both rates and redox properties.46

The values of k for $Co^{I}(4,11$ -dieneN₄) in Table III, measured at low and constant ionic strength at pH 9.2, provide some insight into the details of these electron transfer reactions. For Co(en)₃³⁺ and Co(NH₃)₆³⁺ (reduction potentials of -0.30^{53} and +0.10 V,⁵⁴ respectively) the rate constants are virtually identical but, assuming the general validity of the Marcus relationship, can be attributed to the compensating effects of higher reducibility but lower exchange reactivity^{50c} shown by Co(NH₃)₆³⁺. The Co(III)-macrocyclic complexes, which have very similar redox potentials⁵⁵ and as +1 charged species will have a different electrostatic effect in their reaction with the +1 charged reductants compared to the other Co(III) complexes, show reactivity of the same magnitude as $Co(en)_3^{3+}$ and $Co(NH_3)_6^{3+}$. Perhaps the anomalous variations⁵¹ in the Marcus reorganizational parameter are in effect here. $Ru(NH_3)_6^{3+}$,⁵⁶ which has a reduction potential $(+0.05 \text{ V})^{57}$ similar to that of $Co(NH_3)_6^{3+}$ and an electron exchange rate 10^{12} times faster.⁵⁰ reacts at a rate that is about two orders of magnitude faster; the Marcus correlation would predict a difference of about five-six orders of magnitude. The lower rate shown by the Ru(III)-NO⁵⁸ complex may be due to its lower reducibility⁵⁹ or may reflect electron delocalization in that complex allowing its behavior to be ascribed in part to its valence tautomeric Ru(II)-NO⁺ form. $Cr(bpy)_{3}^{3+}$ (E⁰ = $-0.40 \text{ V})^{56}$ and Co(bpy)₃³⁺ ($E^0 = +0.37 \text{ V})^{60}$ show equal and very high rates while the more powerfully oxidizing $Fe(bpy)_3^{3+61}$ (E⁰ = +1.1 V)⁶⁰ reacts almost two orders of magnitude more slowly. The involvement of the ligand orbitals in the electron transfer process must be considered inasmuch as the π system of the aromatic ligand could provide a facile pathway as has been inferred from the rate constants for the reaction of CO₂⁻ radicals with complexes containing aromatic ligands.⁶² The behavior of Fe(bpy)₃³⁺,

with its high reducibility and exchange reactivity, can only be viewed as anomolous at the present time.

Other Reactions. The reaction of O_2 with all three Co(I) species is very rapid. Cobalt complexes can behave as oxygen carriers⁶³ and the reaction of Co(I) with O_2 can be viewed as proceeding via electron transfer with the formation of O_2^- (Co(I) + $O_2 \rightarrow$ Co(II) + O_2^-) or a coordination mechanism involving incorporation of O_2 into the coordination sphere of the Co(I) center:

$$Co(I) + O_2 \rightarrow [Co(I)-O_2] \leftrightarrow [Co(II)-O_2^-] \leftrightarrow [Co(III)-O_2^{2-}]$$

Inasmuch as the Co(I) + O₂ reaction did not regenerate the spectra of the original Co(II) species, it is possible that the reaction proceeds via the coordination route. We have also found that the reaction of Cu¹(4,11-dieneN₄) with O₂ does not generate free O₂⁻ radicals but the Ni(I) macrocyclic species do.⁴⁶ In contrast, Sellers and Simic⁶⁴ have found that Co_{aq}⁺ + O₂ generates O₂⁻.

Pratt and co-workers⁶⁵ have shown that N₂O reacts rapidly with a number of Co(I) complexes of dimethylglyoxime, 2,2'-bipyridyl, 1,2-bis(diphenylphosphine)ethane, and with vitamin B_{12S} according to the overall stoichiometry: $2Co(I) + N_2O \rightarrow 2Co(II) + N_2$. All these reactions have been proposed to occur via the simple two-electron reduction of N₂O to N₂ with the concomitant formation of Co(III) which is then itself reduced by Co(I) to yield the Co(II) final product. No evidence has been obtained for the addition of N₂O into the coordination sphere of the metal. In our experiments, the rapid reaction of Co(I) with excess N₂O would deplete the supply of Co(I) prohibiting the further loss of Co(III). The residual spectrum after the decay of Co(I) did not resemble the Co(II) substrate but could be that of Co^{III}(4,11-dieneN₄).⁶⁶

The reaction of nucleophilic low-valent complexes with alkyl halides is one of the more general routes to the preparation of Co(III)-alkyl complexes.^{8,9} The rate constant for the reaction of vitamin B_{12S} with CH_3I to form methylco-balamine is $3.4 \times 10^4 M^{-1} \sec^{-1.4}$ We find the rate constant for the reaction of $Co^{I}(4, 11 - dieneN_4)$ with CH₃I to be about four orders of magnitude higher suggesting, as Endicott has indicated,¹² that the $Co^{I}(4,11-dieneN_{4})$ species does not follow the classical SN2 mechanism found for other Co(I) nucleophiles, including vitamin B_{12S} , but rather reacts via an electron transfer mechanism generating Co(II), CH₃ radicals, and I⁻ in the first instance. Because of the high concentration of the Co(II) substrate we were required to use we were unable to make spectral observations at $\lambda < 370$ nm. It could not be established by this experiment whether the initial product of the $Co(I) + CH_3I$ reaction was Co(II) (λ_{max} 330 nm) or Co(III)-CH₃ (λ_{max} ~280 nm). However, we have determined that $Co^{11}(4,11$ dieneN₄) reacts rapidly with CH₃ radicals at pH 9.2 with k= $(1-2) \times 10^8 M^{-1} \text{ sec}^{-1}$ producing the spectrum of the alkyl complex,³⁶ the rate constant being of the same magnitude as that determined⁵² using CH₃ radicals generated in of Co(Nthe charge transfer photochemistry H_3)₅O₂CCH₃²⁺⁶⁷ in highly acidic solution. Experimentally, alkyl complexes of Co^{III}(4,11-dieneN₄) have not been isolated from the reaction of alkyl halides with the Co(I)species. This failure may be related to certain reaction conditions, such as acidity, allowing for competing reaction pathways (for example, direct electron transfer⁶⁸) in the reaction of Co(II) with CH_3 radicals. The reaction of CH_3I with $Co^{I}(1,3,8,10$ -tetraeneN₄) was too slow to monitor by the pulse technique. This reaction and the reaction of the Co(II) species with CH₃ radicals have been shown to produce the Co(III)-CH₃ complex by other techniques.^{9,68} Because of its slowness, the $Co^{I}(1,3,8,10-tetraeneN_4) + CH_3I$ reaction presumably occurs via the SN2 mechanism.⁶⁹

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. The authors also wish to acknowledge their many conversations with Professor J. F. Endicott about this work.

References and Notes

- (1) Presented in part at the Symposium on Electron Transfer Mechanisms. 167th National Meeting of the American Chemical Society, Los Angeles, Calif., April 1974, INOR 131.
- (2) (a) Boston University; (b) U.S. Army Natick Laboratories.
 (3) G. Costa, *Pure Appl. Chem.*, **30**, 335 (1972).
- (4) J. M. Pratt, "Inorganic Chemistry of Vitamin B12", Academic Press. New York, N.Y., 1972.
- (5) J. N. Bayston and M. E. Winfield, J. Catal., 9, 217 (1967)
- (6) L. P. Lee and G. N. Schrauzer, J. Am. Chem. Soc., 90, 5274 (1968).
 (7) H. A. O. Hill, J. M. Pratt, and R. J. P. Williams, Chem. Brit., 5, 156 (1969); G. N. Schrauzer, Adv. Chem. Ser., 100, 1 (1970).
- E. Ochiai, K. M. Long, C. R. Sperati, and D. H. Busch, J. Am. Chem. (8) Soc., 91, 3201 (1969).
- (9) K. Farmery and D. H. Busch, *Inorg. Chem.*, 11, 2901 (1972).
 (10) G. Costa, A. Puxeddu, and E. Reisenhofer, *J. Chem. Soc.*, *Dalton* Trans., 2034 (1973). (11) E. B. Fleischer and M. Krishnamurthy, J. Am. Chem. Soc., 94, 1382
- (1972).
- (12) D. P. Rillema, J. F. Endicott, and E. Papaconstantinou, Inorg. Chem., 10, 1739 (1971).
- (13) J. Vasilevskis and D. C. Olson, inorg. Chem., 10, 1228 (1971); 8, 1611 (1969)
- (14) The abbreviations used for the macrocyclic ligands are based on the suggestions of Busch and co-workers.^{15,16} and will be used in their simplest forms: aneN₄ \equiv Me₆[14]aneN₄ = 5.5,7.12,12.14-hexamethyl-1.4.8.11-tetraazacyclotetradecane: 4.11-dieneN4 = Me6[14]4,11-dieneN₄ = 5.7.7.12.14,14-hexamethyl-1.4.8.11-tetraazacyclotetradeca-4,11-diene: 4.14-dieneN₄ \equiv Me₆[14]4.14-dieneN₄ = 5,7.7.12.12,15-1.4.8.11-tetraazacyclotetradeca-1.3.8.10-tetraene.
- (15) V. L. Goedken, P. H. Merrell, and D. H. Busch, J. Am. Chem. Soc., 94, 3397 (1972).
- (16) J. C. Dabrowiak, P. H. Merrell, and D. H. Busch, Inorg. Chem., 11, 1979 (1972).
- (17) E. J. Hart and M. Anbar, "The Hydrated Electron", Wiley-Interscience,
- New York, N.Y., 1970. (18) A. O. Allen, "The Radiation Chemistry of Water and Aqueous Solu-tions", Van Nostrand, New York, N.Y., 1961.
- M. Ebert, J. P. Keene, A. J. Swallow, and J. H. Baxendale, Ed., "Pulse Radiolysis", Academic Press, New York, N.Y., 1965.
 M. Simic, P. Neta, and E. Hayon, J. Phys. Chem., 73, 3794 (1969).
 J. P. Keene, E. D. Black, and E. Hayon, Rev. Sci. Instrum., 40, 1199
- (1969).
- (22) E. Hayon, J. Chem. Phys., 51, 488 (1967).
- (23) J. H. Baxendale, P. L. T. Bevan, and D. A. Scott, Trans. Faraday Soc., 64, 2398 (1968).
- (24) A. M. Tait and D. H. Busch, inorg. Synth., in press (25) N. F. Curtis and R. W. Hay, Chem. Commun., 524 (1966).
- (26) V. L. Goedken and D. H. Busch, Inorg. Chem., in press.
- (27) J. L. Love and H. K. J. Powell, Inorg. Nucl. Chem. Lett., 3, 133 (1967).
 (28) N. F. Curtis, Y. M. Curtis, and H. K. J. Powell, J. Chem. Soc. A, 1015 (1966).
- (29) ESR data have shown³⁰ that these Coll(dieneN₄) macrocyclic complexes are five-coordinate in actionitrile solutions. A recent x-ray crystallographic study³¹ indicates that in the solid state the 4.11-dieneN₄ complex exists as six-coordinate with two H2O molecules occupying the axial positions.
- (30) A. M. Tait, F. V. Lovecchio, E. S. Gore, and D. H. Busch, unpublished resuits.

- (31) M. D. Glick, J. M. Kuszaj, and J. F. Endicott, J. Am. Chem. Soc., 95, 5097 (1973).
- (32) The coordination number of the metal center of this complex in aqueous solution has not been determined although it appears to be six-coordi-nate in the solid state.³³
- (33) M. D. Glick, W. G. Schmonsees, and J. F. Endicott, J. Am. Chem. Soc., 96, 5661 (1974).
- (34) L. M. Dorfman and G. E. Adams, "Reactivity of the Hydroxyl Radical In Aqueous Solutions", U.S. Department of Commerce. National Bureau of Standards, NSRDS-NBS 46 (1973).
- (35) P. Neta, M. Simic, and E. Hayon, J. Phys. Chem., 73, 4207 (1969).
- (36) A. M. Tait, M. Z. Hoffman, and E. Hayon, J. Phys. Chem., submitted for publication. (37) J. F. Endicott, private communication.
- (38) (a) P. S. Rao and E. Hayon, J. Phys. Chem., 77, 2753 (1973); (b) Ibid., 77, 2274 (1973); (c) Biochem. Biophys. Res. Commun., 51, 467 (1973); (d) J. Am. Chem. Soc., 96, 1287 (1974); (e) Ibid., 96, 1295 (1974); (f) ibid., 97, 298 (1975).
- (39) P. S. Rao and E. Hayon, Biochim. Biophys. Acta. 292, 516 (1973); E. Hayon and M. Simlc, J. Am. Chem. Soc. 95, 1029 (1973).
- (40) R. L. Willson, C. L. Greenstock, G. E. Adams, R. Wageman, and L. M. Dorfman, Int. J. Radiat. Phys. Chem., 3, 211 (1971). (41) M. Anbar, M. Bambenek, and A. B. Ross, "Selected Specific Rates of
- Reactions of Transients from Water in Aqueous Solution", U.S. Department of Commerce, National Bureau of Standards, NSRDS-NBS 43 (1972)

- (1972).
 (42) P. Neta, Chem. Rev., 72, 533 (1972).
 (43) G. D. Venerable II, and J. Halpern, J. Am. Chem. Soc., 93, 2176 (1971).
 (44) G. N. Schrauzer and R. J. Holland, J. Am. Chem. Soc., 93, 1505 (1971);
 G. N. Schrauzer and R. J. Windgassen, *ibid.*, 89, 1999 (1967).
- (45) R. G. S. Banks and J. M. Pratt, J. Chem. Soc. A, 854 (1968).

- (46) A. M. Tait, M. Z. Hoffman, and E. Hayon, *Inorg. Chem.*, in press.
 (47) M. Eigen, *Angew. Chem.*, *Int. Ed. Engl.*, 3, 1 (1964).
 (48) S. W. Benson, "The Foundations of Chemical Kinetics", McGraw-Hill, New York, N.Y., 1960, p 525.
- (49) T. S. Roche and J. F. Endicott, J. Am. Chem. Soc., 94, 8622 (1972)
- (50) (a) H. Taube, "Electron Transfer Reactions of Complex Ions in Solu-tion". Academic Press, New York, N.Y., 1970; (b) R. G. Linck, MTP Int. Rev. Sci., Inorg. Chem., 9, 303 (1971); (c) N. Sutin in "Inorganic Bio-chemistry", Vol. 2, G. L. Eichorn, Ed., Elsevier, New York, N.Y., 1973, p 611; (d) L. E. Bennett, *Prog. Inorg. Chem.*, 16, 1 (1973).
 (51) D. P. Rillema and J. F. Endicott, *Inorg. Chem.*, 11, 2361 (1972).
 (52) R. A. Marcus, *Annu. Rev. Phys. Chem.*, 15, 155 (1964).
 (53) A. Zwickel and H. Taube, *Discuss. Faraday Soc.*, 29, 42 (1960).

- (54) W. Latimer, "Oxidation Potentials", 2nd ed, Prentice-Hall, Englewood Cliffs. N.J., 1952.
- (55) D. P. Rillema, J. F. Endicott, and R. C. Patel, J. Am. Chem. Soc., 94, 394 (1972).
- (56) The pKa for Ru(NH3)63+ is 12.5 (D. Waysbort and G. Navon, Chem. Commun., 1410 (1971)) thereby eliminating the possibility of the depro-
- tornated complex being a major contributor to the reaction.
 (57) H. S. Lim, D. I. Barclay, and F. C. Anson, *Inorg. Chem.*, 11, 1460 (1972).
 (58) The pK_a of Ru(NH₃)₅NO³⁺ is probably >12 (F. Bottomley and J. R. Crawford, *J. Chem. Soc., Dalton Trans.*, 2145 (1972)).
- (59) J. N. Armor and M. Z. Hoffman, *Inorg. Chem.*, 14, 444 (1975).
 (60) D. A. Buckingham and A. M. Sargeson in "Chelating Agents and Metal Chelates", F. P. Dwyer and D. P. Mellor, Ed., Academic Press, New York, N.Y., 1964.
- (61) Although Fe(bpy) 3^{3+} is sensitive to base, all experiments using the com (d) Autogri re(bp); a sensitive to best all experiments using the Complex were performed as rapidly as possible in less than 30 min. At pH 9.2, the half-life for Fe(bpy)₃³⁺ is longer than 1 hr (G. Nord, *J. Chem. Soc., Dalton Trans.*, 866 (1972)).
 (62) M. Z. Hoffman and M. Simic, *Inorg. Chem.*, 12, 2471 (1973).
- (63) R. G. Wilkins Adv. Chem. Ser., No. 100, 111 (1970).
- (64) R. M. Sellers and M. G. Simic, submitted for publication.
- (65) R. G. S. Banks, R. J. Henderson, and J. M. Pratt, J. Chem. Soc. A, 2886 (1968)
- (66) N. Sadasivan, J. A. Kernohan, and J. F. Endlcott, Inorg. Chem., 8, 770 (1967).
- (67) E. R. Kantrowitz, M. Z. Hoffman, and J. F. Endlcott, J. Phys. Chem., 75, 1914 (1971).
- (68) T. S. Roche and J. F. Endicott, *Inorg. Chem.*, **13**, 1575 (1974).
 (69) D. G. Brown, *Prog. Inorg. Chem.*, **18**, 177 (1973).